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Summary of FE-I Design Status

K. Einsweiler, LBNL

Critical Issues from June FE-I Review
•Perforamance of the analog front-end observed in test chips

•Front-end configuration, shielding, and power distribution for analog front-end

Progress in understanding analog front-end performance
•Detailed comparisons of TSMC and IBM chip performance with HSPICE

Present Status
•Layout and Schematics

•Overall Verification
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Analog Issues from the Review
Threshold dispersion and matching:

•Have carried out several studies of impact of VT matching on

•First simulations just used a voltage source to shift the VT of e
in the preamplifier and second stage by a known amount, and
expected VT mis-match for that device. Unfortunate fact is th
the preamp and second amplifier contribute to the threshold d

•Two analyses has been done. One replaces each FET by a s
the VT in accordance with W and L, but only uses DC operati
the dispersion. The second approach actually does a thresho
of VT shifts, and then computes a dispersion. The two analys

•Each device had its VT modified using sigma taken from the t
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•Threshold simulation, moving each device by ∆VT = +5mV:

•Need to combine contributions in quadrature, but behavior loo
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•Results of Monte Carlo simulation, sliced at one value of ITH2

•Have not included sources of chip-chip variations, but matchin
consistent with the magnitude of the observed threshold disp

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000 80

Threshold [e-] ITH2=300 nA



A T L A S  P i x e l  W e e k ,  J u n e  2 0 0 1

FE-I Overview, June 12 2001    5 of 44

 IBM test chip:
 scan:

ersion is consistent 
from matching 
onsidering only VT 

evices in preamp 
mplifier.

s the latest and 
for the injection 
K. Einsweiler          Lawrence Berkeley National Lab

Threshold dispersion before and after tuning in
•Example of observed raw dispersion and noise from threshold

IBM #1: Untuned Thresholds and ENC Distribution (Cinj=4.03fF)

Untuned Thresholds

Noise Distribution
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•Tuning of threshold using 5-bit pixel TDACs:

IBM1: Tuned Threshold Stability

Distribution of Thresholds for Initial Tuned Scan (neglecting 3 untunable outliers)

Threshold vs. Pixel ID For 5 Scans Measured over 4 days (tuned)
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How are we responding to this dispersion for t
•Major difference between this design and all earlier designs is

the preamplifier. Previously, we used a feedback capacitor in
and a single-stage front-end. In the test chips, we have a dra
capacitance of Cfb=14fF. When considering the Cfb which is 
preamp gain, there is a significant additional contribution from
capacitance of the feedback transistors, making the total arou
the preamp gain about 5 times lower than in earlier designs.

•Analysis showed that many devices were responsible for disp
dispersion in the second amplifier was larger than in the prea
AC-coupling approach would not have helped significantly (30
Many transistors whose size could be increased for better ma
small to avoid large parasitic capacitances on critical nodes, 

•We believe that a significant improvement in the threshold dis
would require major changes to the threshold control, and wo
test chip iteration to reduce the risk to an acceptable level. W
with this work, but not until the present chip is submitted for a

•We therefore considered changes that are rather modest, and
small extrapolations from the present design. The path chose
reduce the value of the feedback capacitance. One design wo
10fF feedback, and the second a more aggressive 5fF feedb
expected to have a reduction by a factor of two in the thresho
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Power distribution, shielding, power supply re
•Present preamplifier design is single-ended with a PMOS inpu

cascode. This design has considerable sensitivity to noise on
since this modulates Vgs of the input transistor in roughly the
input at the gate does. The ground node has little noise sens

•Our strategy for power distribution within the chip is consisten
There are two analog supply nets, VDDA and VDDREF. VDD
everything except the preamplifier. Note that everything exce
differential, and has very good power supply rejection. Also n
operation, there is very little AC current on these two nets (al
digital supply). These two supply nets are connected by wire-

•We have also implemented significant amounts of local decou
power supply, placing a capacitance of about 5.5pF inside of 
should minimize any spikes on the substrate and the digital s

•The present shielding arrangement is similar to what was disc
Review. In the front-end region, M5 is VDDREF and M4 is a m
VDDA. The M3 layer contains many vertical bias connections
readout region of the pixel (back of the pixel), M5 remains VD
VDDA. The M3 layer contains many vertical bus connections
All of these M3 signals are differential, and the asynchronous
are also reduced swing (VDD/2). This seemed to be the best c
shielding and power distribution (no unused shield layer was 
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Detailed studies of Analog Test Chip per
•Fabricated 20-pixel analog test chips in both TSMC and IBM 0

•Detailed study has revealed minor and major process differen
have a large effect on our design performance. 

•In general, all inter-layer dielectrics are thinner in IBM, making
capacitances. 

Impact of large PMOS well-substrate capacitan
•In addition, we only recently realized that the IBM epi layer is 

leading to a very large well-substrate parasitic (ten times larg

almost 1fF/µ2. 

•This affects our design in three different places. First, the prea
transistors used a body connection to the PMOS source to in
range, resulting in an estimated parasitic of 60fF, which signif
risetime of our preamplifier in the IBM process. Second, in th
50Ω buffer we use to monitor internal waveforms, a combined
follower also used PMOS with bodies connected to their sour
parasitic which degraded the risetime of the buffer by a factor
compensated by doubling the source follower bias). Third, the
we used to simulate the sensors were PMOS transistors in in
capacitance was lower than expected (about 60% of Cox), bu
well capacitance doubled their value compared to TSMC.
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•Comparison of preamp risetime, with/without well parasitics, a

•Risetime at 10Ke with expected 400fF load degrades from 15

D
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D
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File

atlas\ibm025\hspice\laurent\cell16v_buffer.tr0

atlas\ibm025\hspice\laurent\cell16v_buffer.tr1

atlas\ibm025\hspice\laurent\cell16v_buffer.tr2

ATLAS\IBM025\HSpice\Laurent\cell16v_buffer_nowell.tr0

ATLAS\IBM025\HSpice\Laurent\cell16v_buffer_nowell.tr1

ATLAS\IBM025\HSpice\Laurent\cell16v_buffer_nowell.tr2
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Transient

Transient
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Transient

Design
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ibm cell, vdd=1.6v, typ params, ib=128ua, cw, ci=4f, cd=400ff, c
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•In addition, there were some minor errors in internal signal an
added parasitic capacitances and series resistances in some

•We have attempted to include all of these effects in our simula
to set up the lab measurements with equivalent parameters, 
at their nominal values. 

•Some of these currents can be directly checked. The preamp 
checked by measuring the change in analog power versus D
typically accurate to about 5%. The feedback current is mirro
and participates in a programmable OR chain, which allows u
the feedback current of any pixel. A standard value of IF=1nA
feedback discharge current of 2nA.

•We have then carried out detailed comparisons of preamp ga
TOT behavior, second stage gain, noise, and timewalk. The a
perfect, but it is quite acceptable, typically at the 10-20% leve
us that we understand the basic performance of the front-end
HSPICE simulations can be used to predict the performance 
that we make.
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•Example comparison of preamp output amplitude (including 5

•Lab measurements for two points (roughly 5Ke and 10Ke) are
The preamp gain and buffer gain seem to be fairly well mode

Wave

D0:A0:peakout

D0:A1:peakout

D0:A2:peakout

File

cell16v_buffer.mt0
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Design
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•Example of preamp risetime versus injected charge:

•Lower plot is after 50Ω buffer. Measurements give risetimes v
small amplitude to 50-55ns at larger amplitude, in good agree

Wave

D0:A0:86:trisepos

D0:A1:86:trisepos

D0:A2:86:trisepos

File
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Wave

D0:A0:79:trisepos

D0:A1:79:trisepos

D0:A2:79:trisepos

File

cell16v_buffer.mt0

cell16v_buffer.mt1

cell16v_buffer.mt2

Type

Transient

Transient

Transient

Design

D0: CELL16V_BUFFER

D0: CELL16V_BUFFER

D0: CELL16V_BUFFER

M
e
a
s
u
r
e
s
 
(
l
i
n
)

40n

45n

50n

55n

Outer Result (lin) (lev)

-500m -400m -300m -200m -1
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•Example of TOT versus injected charge for IF=1nA:

•Very linear TOT performance observed both in the lab and in s
measure 1.1µs in lab and about 1.3µs in simulation.

Wave

D0:A0:v(out)

Type

Transient
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D0: CELL16V_TOT
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ibm cell, vdd=1.6v, typ params, cwell, cdet=400ff, cf=10ff, if=1

Wave

D0:A0:tot

D0:A1:tot

D0:A2:tot

D0:A3:tot

File

cell16v_tot.mt0
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•Example of noise measurement:

IBM1: Load Capacitance Scan without 0fF enabled and ILKDAC=0

S-curve data for 16 values of load-C

Threshold vs. Load-C Noise vs. Load-C
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•Example of measurement and tuning of feedback current:

IBM1: Mean TOTs Untuned Configuration (IFDAC=20,IFTDACs=16)

Mean TOT vs. Pixel for 1MIP of charge

Mean TOT vs. Input Charge for 20 pixels
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•Performance observed after tuning IF using IFTrim DAC in ea

IBM1: Mean TOTs Tuned Configuration (IFDAC=20)

Mean TOT vs. IFTDAC

Mean TOT vs. Input Charge for 20 tuned pixels

IFDAC Setting
0 5 10 15 20 25 30

M
ea

n
 T

O
T

 / 
n

s

400

600

800

1000

1200

1400

1600

1800

2000

Charge / e-
5000 10000 15000 20000 25000 30000 35000 40000 45000

M
ea

n
 T

O
T

 / 
n

s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200

Upper plo
versus IF
adjustme
linear, bu
dispersio
testchip.

After tuni
performa
channels
previous 
seen fact
the TOT t
slope).



A T L A S  P i x e l  W e e k ,  J u n e  2 0 0 1

FE-I Overview, June 12 2001    18 of 44

lues from 5-15fF:

erdrive required to 
 than 1000e.

 risetime.

Symbol 

7k
K. Einsweiler          Lawrence Berkeley National Lab

•Example of timewalk simulations for IBM with different Cfb va

•Timewalk defined relative to 100Ke input. Relevant value is ov
achieve timewalk less than 20ns. Without parasitics, see less

•Here, see roughly 4Ke overdrive required due to poor preamp

Wave

D0:A0:3:timewalk

D0:A6:3:timewalk

D0:A7:3:timewalk

File

cell16v_twalk_well.mt0

cell16v_twalk_well.mt6

cell16v_twalk_well.mt7

Type

Transient

Transient

Transient

Design

D0: CELL16V_TWALK_WELL

D0: CELL16V_TWALK_WELL

D0: CELL16V_TWALK_WELL

M
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s
 
(
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)
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0
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40n

60n

80n
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Outer Result (lin) (lev2)
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ibm cell, vdd=1.6v, typ params, cdet=400ff, cf=10ff, cwell=60f,
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•Example of timewalk simulations for TSMC with different Cfb 

•Here, see roughly 1.5Ke overdrive required. The difference is
IBM (this simulation includes layout parasitics and small TSM
Without parasitics, IBM design is expected to be slightly faste

•Observed value in the lab is about 2Ke for TSMC with this loa

Wave

D0:A0:3:timewalk

D0:A6:3:timewalk

D0:A7:3:timewalk

File

cell16v_tsmc_twalk_well.mt0

cell16v_tsmc_twalk_well.mt6

cell16v_tsmc_twalk_well.mt7

Type

Transient

Transient

Transient

Design

D0: CELL16V_TSMC_TWALK_WELL

D0: CELL16V_TSMC_TWALK_WELL

D0: CELL16V_TSMC_TWALK_WELL
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tsmc cell, vdd=1.6v, typ params, cdet=400ff, cf=10ff, cwell=12ff
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•Example timewalk scan for IBM testchip:

IBM1: Timewalk for Standard DAC Settings and 400fF Load; Internal Injection

Timewalk vs. Input Charge (low C) Timewalk vs. Input Charge (High C)

Timewalk vs. Overdrive (Low C) Timewalk vs. Overdrive (High C)
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•The major new issue that must be dealt with is the large well-
the preamplifier output. This degrades the timewalk performa
version of the front-end to an unacceptable level. However, the
is within the acceptable range. 

•In order to eliminate this problem, we are presently studying a
scheme in which only one PMOS is used, and its body is conn
approach appears to lead to identical performance in every re
20% loss in dynamic range in the preamp. This will slightly re
threshold which we can set. We intend to continue verifying th
simulation over the next 1-2 weeks, and barring unforeseen s
implement it in the final chip.

•One major omission in the test chips was an array of the critic
could be used to determine their actual values. IBM provides
the capacitances of their process. We have used analytic cal
“fringe” capacitance from the layer information, and we have 
perform hand calculations of capacitor values. These results d
the DIVA extracted values. The DIVA extraction seems to pro
capacitances for digital layouts (long thin traces), but does not
for large analog capacitors (complex geometries with large ar
contributions). Our hand calculations suggest that Cfb is abo
intended to have 10fF), and Clo is about 4fF. These values w
comparisons of simulation and measurement, and produce g
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Improvements for the engineering run:
•Our design and its characterization depends critically on three

These are two injection capacitors (Clo and Chi) and the feed
In the final chip, these capacitors are built up by using all 6 av
layers in a complex stack. The Poly layer is used for Chi, and
shield between the input and the substrate during normal ope
M5 are all connected together as the input node for the pream
more of Chi and also Clo. M4 contains more of Chi and also C
a charge-pump capacitor measurement circuit in the bottom o
contains 0, 1, 2, and 4 versions of each of these capacitors, i
measure these capacitors chip by chip during the wafer probin
Clo to be 5fF, and Chi to be 40fF. We have a pad with Cfb of 
of 10fF, allowing us to chose one of these two gain configura

•Simulations have been performed on the performance of the F
Cfb, over the range 5-15fF. We have looked at noise, TOT, tim
behavior. It appears that the only disadvantages of the highe
that the cross-talk sensitivity is somewhat increased, and the
value is reduced from about 10Ke with Cfb=10fF to about 7K
more quantitative, for a threshold of 2.5Ke, a charge above 3
pixel if Cfb is 15fF, whereas a neighbor charge of 27Ke is requ

•The reduction in threshold dispersion expected from the highe
important than the modest increase in cross-talk sensitivity se
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•We have made a number of minor improvements in the analo
performance, based on the test chip results. These include m
and IF DAC ranges, and implementing an improved charge in
better internal chopper, and an independent external injection
optimized the sizing of the critical capacitors in the design, as
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Digital Issues from the Review
Metastability:

•There are a very limited number of places in the FE chip wher
signals become synchronous, and there are risks of metastab
concern would be whether a control signal could enter a meta
would alter the behavior of the chip for an extended period of

•We have carefully evaluated this areas in the design, and beli
significant metastability problems. 

•The first, and most important, asynchronous signal is the hit in
recorded by an RS FF and then synchronized with the 40MH
recording the 8-bit Grey-coded timestamp value at which it oc
state could occur for the latched timestamp data, but this wou
hit, and could not persist for longer times. 

•The second is the sparse scan signal used to signal to the CE
hits to be read out in a column. Although this is a control sign
circuit clocked at 40MHz, and any metastable condition would
25ns.

•A final potential problem is the transfer of the data to the CEU
slow risetimes involved could cause a violation of setup times
Simulations show that we have a large timing margin, even fo
variations, so we do not anticipate any problems in this area.
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DC Power Consumption:
•Concerns were expressed about excess power consumption 

precharge readout of the column. In particular, the differentia
precharged to the metastable point (VDD/2), and so there is a
could propagate into the subsequent gates, and cause large 
by leaving inverters with both transistors turned on.

•The present sense amplifier design is a differential pair in whi
and VDD connections are floating until it is enabled. This is fo
in which the ground connection is floating until the sense amp
Studies of this design indicate that the inverter output will alw
the sense amplifier is not enabled, so we do not produce met

Readout optimization:
•Possible improvements in the operation of the column readout

were suggested. In particular, it was suggested to disconnect
from the sense amplifier during the sense phase, leaving the
parasitics at the sense amplifier input (standard technique in 

•We estimated that the power savings from this was quite mod
improvement was significant, but simulations already show a
in the data transfer speed, so no modification was made. How
pipeline stage was added to the timing of the TOT processor 
sense amplifiers, in order to make its timing more conservativ
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Issues related to the internal decoupling c
•In order to suppress the large digital transients produced by 0

(min-size inverter in standard cell library produces 1mA spike
we have decided to implement “smart” decoupling capacitors
matrix.

•The basic design is based on the IBM recommendations (PMO
with a large series NMOS to ground for controlling capacitor)
considerable intelligence to the capacitor to deal with potentia
are running low-power digital chips where 10mA is a significa
power budget).

•The basic capacitor cell includes a capacitor with a value of a
NMOS, and a thin M1 trace on the minus side. The M1 trace 
about 20Ω and the NMOS when turned on (Vds=2.0V) has a
30Ω, giving an effective 50Ω series resistance with each unit 
will mitigate any LC resonant effects due to the inductive bond
If the unit cell contained only the capacitor and the NMOS sw
capacitor could cause up to 10mA of local current flow (Id of 

•There is a “CapTest” active high signal which puts the capacit
where it is disconnected from the power rail, and its leakage 
global 15nA bias circuit. If the capacitor leakage is larger than
when CapTest returns to inactive, an internal latch keeps this
disconnected from the ground net.
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•There is logic for an “AutoTest” feature. In this case, a local cu
about 1mA during normal operation (CapTest not active) will c
to be forced permanently on, resulting in the cell drawing the 1
not the large current through the shorted capacitor. This will a
disabling of bad capacitors even without a CapTest cycle bein

•There is PowerOn circuitry to make sure that CapTest is high 
will make sure that all capacitors are disconnected from the V
is first applied. The capacitors will then all charge up to VDD 
local test current. Even if all capacitors are defective, this will
cannot short the global VDD net. Also, the capacitor logic is on
connected at the bottom of chip.  This guarantees that interna
chip due to local capacitor shorts cannot reduce the VDD for t
point where it no longer operates correctly.

•We believe that this combination of safety features should red
implementing this new feature to an acceptable level.

•A total of 3 smart capacitors are placed in each pixel, for a tota
giving roughly 15nF of total decoupling. These capacitors are
have excellent properties up into the GHz region.
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o cap groups:

 capacitors in the 
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Layout of pixel, showing two FE blocks and tw

•Capacitor size is roughly 40x50µ, allowing the placement of 3
remaining empty space in the pixel.
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Progess in verification of top-level d
Verilog (functional verification):

•Have been running top-level Verilog simulations on digital par
exercising the Command Decoder, Global Register and Pixel

•Have injected simple hit patterns and seen correct data appea

•Next steps involve creating more sophisticated test vectors fo
more complete testing of results for correctness.

•Much careful work done here, and no problems are expected.

TimeMill and PowerMill (timing verification):
•Have been running column pair simulation (without the readou

bottom of the chip) for about one week. This is a fully extracte
about 125K FETs and 250K parasitic capacitors. This seems 

•The power consumption looks a bit higher than expected. Pow
32mA DC current for the digital readout in an idle state (no hi
increasing to about 50mA if all column pairs are active, with a
about 1 hit per chip in each 25ns crossing. These numbers re
checking, as occasionally some memory nodes power up into
which draw high current until written into (SRAM in EOC and
this design). Our nominal power budget was initially set to be
case of 40mA.
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•First simulations including the readout controller have been pe
hits are seen. This is not yet an extracted simulation for the re
its connections.

•Next steps are to create a final netlist for the single column pa
controller, including all parasitics. In addition, a final netlist for 
includes all nine column pairs, but only 16 pixels in each, and
each, will be made. These two netlists should allow us to veri
timing of the digital readout, and yet be small enough for con
with TimeMill.

•This work will continue over the next 2-3 weeks until the antic
date.
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Present Status of FE-I
Overall Layout:

•All blocks are complete, including special power managemen

•Final integration of synthesized digital blocks at the bottom of t
completed.

•Only block not yet integrated is prototype linear regulator, pre
Bonn.

•LVS and DRC performed so far only on “little chip” consisting 
column pair and 16 pixels per column (about 300K transistors

•Hercules checks made on other small chips, and pad frame in

Overall Schematic:
•Top level schematic recently had final major integration occur,

synthesized digital readout and command decoder block. It is
complete.

•LVS checking of little chip is ongoing, and for full chip should s

Expect to finish layout and schematic in the ne
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Brief tour of the layout:
•Top level view of the chip (all 5 metals displayed):
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•Zoom into bottom of column region, showing integration of DA
analog columns, and CEU+TOT processor with digital column

•Left analog column has current reference and register bits, rig
DACs and register bits (all registers use SEU-tolerant latches
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•Zoom into EOC buffer blocks, each containing 64 hit buffers fo
(requiring a total vertical height of about 1mm):

•TOT processor blocks feed into EOC blocks, horizontal bus is
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hesized command 
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•Zoom showing EOC blocks and bottom of chip, including synt
decoder and readout controller blocks:

•Note that the bottom of the chip is still largely empty.
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•Zoom into Pixel FE block:

•Left of bump, can see 10 SEU-tolerant latches. Lower right be
center is feedback, top is second stage and discriminator. Rig
leakage compensation capacitors and additional 4 latches an
hits, calibrations, and digital injection.
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•Zoom into readout region of pixel (two back-to-back columns)

•Central region includes dual 8-bit differential SRAM for LE and
each pixel plus address ROM. Everything is differential (times
RAM and ROM output).

•Left and right sides contain hit logic, sparse scan, and handsh
data transfer.
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FE-I Pinout and Geometry
Sketch of pin assignments and overall geomet

•Note new 100µ x 200µ pad geometry to reduce effects of prob
to allow multiple bonding attempts before pad damage becom
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New features and pins outside the bonding reg
•RefReset pin is active high pin to apply a reset only to the cur

should never be needed, but is a safety feature.

•CapTest pin is to control new “smart” decoupling capacitors w
placed internally in the FE chip. Three capacitors, totalling ab
connected to the digital supply, and placed inside each pixel.
of about 16nF of decoupling in the chip. It should strongly sup
transients generated by the operation of digital logic in the pix
would normally be pulsed in order to cause the capacitors to 
short condition. Shorted capacitors would be automatically di
power supply.

•PowerOn pin provides a power-on reset, which can be bonde
pin for testing. The Global Register, when reset, suppresses 
the digital readout. The major power consumption in the digit
distribution, CEU operation, and EOC buffer state machines. 
Register is reset, the digital part of the chip will operate in a lo
(less than 10% of nominal power), but all basic registers will s
analog supply could be turned on, but since the DAC values 
the current consumption would also be very low. This low-pow
would permit simple continuity tests of the module (and the re
with a power consumption so low that no cooling would be re
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•Power Management features: Two overvoltage clamp circuits 
each power supply. They use a diode and a resistor to set a s
2.7V, after which a large PFET is used to sink excess voltage
the power pads also include the recommended IBM transient
designed to protect the chip from sharp spike transients on th
with or without power applied to the chip. In addition to the ov
there are two simple regulators. One is a shunt regulator, bas
circuit as the clamp, but with a threshold of 2.0V. The second
regulator using a band-gap reference, and set for 1.6V opera
regulator is intended for study of powering schemes based o
supplies. The linear regulator would generate the analog sup
digital supply voltage, allowing operation of the FE chip on a 
There is little risk posed by these circuits if the wire-bonds are
placing them inside the FE chips allows the performance of m
compared with and without these circuits, without changes to

•MonDAC provides multiplexed access to all of the internal DA
characterization during testing.

•MonLeak provides access to a current summing tree (controlle
the HitBus) that allows a direct measurement of the preamp f
the sensor leakage current: I(OutLeak) = 3*If + ILeak. This ha
useful in chip characterization. A simple internal ADC, based
also provided.
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•MonRef allows direct monitoring of the current reference used
pads, without requiring any other circuitry to operate on the F

•MonVCal allows direct monitoring of the VCal voltage generat
FE chip for charge injection calibrations. VCal is generated b
and a resistor. The resistor is matched to the one used in the
providing first-order cancellation of process variations.

•MonAmp would be upgraded to allow us to see the preamp w
sides of the second amplifier, and the chopper input. There is
amplifier, which could drive a daisy-chained bus of test ampli
one was enabled at any time. This circuitry has proven vital in

•CapMeasure pin is attached to new capacitor measurement c
charge pump circuit to measure accurate values for the critic
the front-end (C(feedback), C(inj-low), C(inj-high)) by measur
current. This circuit has been used in the DMILL CapTest chip
accurate measurements of capacitor arrays at the fF level.
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•Lower right chip corner including several analog blocks (50W 
circuit, MonLeak ADC, LVDS current reference, and overvolta
also include linear regulator block:
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Reticle for FE-I Run
Similar to FE-D2 run, all designs should use sa

•Two FE-I chips: the plan is that these would have slightly diff

•MCC-I chip: this is the complete new MCC with U-pinout to s
constraints. It satisfies all of our presently known production r

•DORIC-I and VDC-I chips: they are improved versions of the
the Feb MPW run, including 4-channel VDC matched to Taiw

•Analog Test Chip: this is very similar to the test chips fabrica
IBM and TSMC, but contains the final design and layout of al
64 pixels instead of 20. We are attempting to keep a similar p

•LVDS Buffer Chip: this is a convenient way to include the int
single chip and our test system into a rad-hard chip. Given th
commercial LVDS drivers operating at less than 3.3V, this is e
LVDS->CMOS converters, 3 LVDS->LVDS repeaters (3.5mA

•PM bar: may be useful for checking details of device characte
very good parameter stability seen so far suggests it may no lo
plan to include the small bar designed by the CERN group, a
track the parameter stability on all multi-project runs. We hav
bars from our MPW run to characterize transistors and check
models, and irradiations have been performed to study the pr
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Preliminary reticle layout:
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